skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Daiming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Euclidean path integrals for UV-completions ofd-dimensional bulk quantum gravity were recently studied in [1] by assuming that they satisfy axioms of finiteness, reality, continuity, reflection-positivity, and factorization. Sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ H B of the resulting Hilbert space were then defined for any (d− 2)-dimensional surface$$ \mathcal{B} $$ B , where$$ \mathcal{B} $$ B may be thought of as the boundary ∂Σ of a bulk Cauchy surface in a corresponding Lorentzian description, and where$$ \mathcal{B} $$ B includes the specification of appropriate boundary conditions for bulk fields. Cases where$$ \mathcal{B} $$ B was the disjoint unionB⊔Bof two identical (d− 2)-dimensional surfacesBwere studied in detail and, after the inclusion of finite-dimensional ‘hidden sectors,’ were shown to provide a Hilbert space interpretation of the associated Ryu-Takayanagi entropy. The analysis was performed by constructing type-I von Neumann algebras$$ {\mathcal{A}}_L^B $$ A L B ,$$ {\mathcal{A}}_R^B $$ A R B that act respectively at the left and right copy ofBinB⊔B. Below, we consider the case of general$$ \mathcal{B} $$ B , and in particular for$$ \mathcal{B} $$ B =BL⊔BRwithBL,BRdistinct. For anyBR, we find that the von Neumann algebra atBLacting on the off-diagonal Hilbert space sector$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ H B L B R is a central projection of the corresponding type-I von Neumann algebra on the ‘diagonal’ Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ H B L B L . As a result, the von Neumann algebras$$ {\mathcal{A}}_L^{B_L} $$ A L B L ,$$ {\mathcal{A}}_R^{B_L} $$ A R B L defined in [1] using the diagonal Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ H B L B L turn out to coincide precisely with the analogous algebras defined using the full Hilbert space of the theory (including all sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ H B ). A second implication is that, for any$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ H B L B R , including the same hidden sectors as in the diagonal case again provides a Hilbert space interpretation of the Ryu-Takayanagi entropy. We also show the above central projections to satisfy consistency conditions that lead to a universal central algebra relevant to all choices ofBLandBR
    more » « less